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This book provides an analysis of the problem of high energy consumption 
of mobile networks and describes methods for improving the energy effi-
ciency of mobile networks. It explores new technologies and strategies that 
will enable mobile networks to operate with less energy and become more 
sustainable while not compromising service quality.

Improving the Energy Efficiency of Mobile Networks: Strategies for 5G and 6G 
Technologies is designed to help readers understand how to optimize energy 
consumption in mobile networks. It explores technical solutions for reduc-
ing the energy consumption with a focus on innovative solutions such as 
network energy consumption optimization using artificial intelligence (AI) 
in the management of network resources, energy harvesting (EH), soft-
ware-defined networking, renewable energy sources, and implementation 
of advanced techniques and protocols for improving the energy efficiency 
of mobile networks. The book analyzes how the integration of different 
advanced technologies, network function virtualization, and non-orthogo-
nal multiple access techniques, along with the implementation of AI, renew-
able energy sources, and EH, can contribute to the optimizing energy use 
of mobile networks, without compromising network performance. It offers 
an overview of concrete solutions, with an insight into future directions of 
development, which makes it particularly relevant at a time when industry is 
increasingly moving toward sustainability and the implementation of green 
technologies.

This book is ideal for researchers, industry professionals, and scholars who 
want to gain a deeper understanding of the excessive mobile network energy 
consumption and contribute to the development of energy-efficient and sus-
tainable mobile networks.
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Preface

The rapid evolution of mobile networks has placed improvement of mobile 
network energy efficiency at the forefront of research and technologi-
cal development. With the increasing demand for higher data rates, lower 
latency, and seamless connectivity, mobile networks have expanded signifi-
cantly, leading to a rise in energy consumption and environmental concerns. 
Today, mobile communication networks account for a substantial share of 
global electricity consumption, with user devices, base stations, and other 
network elements contributing to a growing carbon footprint. As the world 
moves toward sustainable digital transformation, optimizing energy use in 
mobile networks has become a global imperative. Governments, regulatory 
bodies, and industry stakeholders are emphasizing the need for green and 
energy-efficient mobile network implementations.

This book provides a comprehensive overview of strategies, technologies, 
and innovations aimed at improving the energy efficiency of mobile commu-
nication networks, particularly in the context of 5G and future 6G technolo-
gies. By exploring both foundational principles and emerging trends, this 
book serves as a guiding resource for addressing the energy sustainability 
challenges of mobile networks, while ensuring that future mobile networks 
remain high-performing and resilient.

Intended for scientists, scholars, practitioners, and professionals, this book 
serves as a valuable resource for understanding the challenges and advance-
ments in energy-efficient mobile network design and implementation. It is 
structured to provide both theoretical foundations and practical insights, 
encouraging further research and innovation in this critical area.

The first chapter of the book, “Introduction to the Problem of Excessive 
Mobile Network Energy Consumption,” outlines the key motivations for 
improving mobile network energy efficiency, addressing environmental 
sustainability, operational costs, regulatory requirements, and technological 
advancements.

The second chapter of the book, “Evolution of Mobile Networks,” explores 
the transition from the first-generation (1G) to the future sixth-generation 
(6G) networks, emphasizing the role of heterogeneous networks, millime-
tre-wave technologies, and artificial intelligence in shaping next-generation 
networks.

Chapter 3 of the book, entitled “Energy Efficiency of Mobile Networks,” 
defines the metrics, factors, and standardization efforts related to energy 
efficiency in mobile communication networks. It also examines the impact 
of network interference, latency, spectral efficiency, and traffic variations on 
energy consumption.
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Chapter 4 of the book, entitled “Optimization of Mobile Network Energy 
Consumption,” presents various techniques for reducing mobile network 
energy consumption, including base station sleep mode strategies, intelligent 
base station transmit power control, massive multiple-input multiple-output 
technologies, cognitive radio techniques, and cloud-based radio access net-
work architectures. Additionally, Chapter 4 discusses energy harvesting and 
renewable energy integration in the power supply of mobile networks and 
the impact of network slicing on the energy efficiency of mobile networks. 
The chapter ends with analyses of the impact of satellite-based mobile net-
work constellations and reconfigurable intelligent surfaces on energy con-
sumption improvements of mobile networks.

The final book chapter, “Future Challenges and Opportunities,” explores 
emerging trends in mobile network energy management, such as AI-driven 
network optimization and the sustainability of 6G networks, emphasizing 
the importance of interdisciplinary collaboration and innovation in shaping 
the future of sustainable wireless communication. The final chapter provides 
a forward-looking perspective on the next generation of mobile networks, 
particularly in the transition toward 6G technologies and the global push 
toward carbon-neutral mobile networks.

This book is designed as an overview resource, aiming to illuminate new 
research directions in the field of energy-efficient mobile networks. By bridg-
ing theoretical advancements with practical implementations, it provides a 
foundation for further innovation, ensuring that future networks are not 
only high-performing but also sustainable.
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1
Introduction to the Problem of Excessive 
Mobile Network Energy Consumption

Regardless of a country’s economic status or an industry sector’s level of 
development, enhancing mobile network energy efficiency (EE) contributes 
to a global reduction in energy consumption (EC) and greenhouse gas (GHG) 
emissions. Achieving these reductions requires the effective implementation 
of information and communication technologies, which serve as a funda-
mental tool for driving EE improvements across all countries or industry sec-
tors worldwide. The rapid proliferation of connected devices in the modern 
digital era, especially smartphones and Internet of Things (IoT) devices, has 
resulted in significant changes in the architecture and performance require-
ments of wireless communication networks. As a consequence, the operators 
of wireless communication networks now face the challenges of managing 
the problem of growing EC of mobile cellular networks.

One of the main reasons for this growth of network EC is due to the increase 
in the number of connected user devices, which also imposes numerous 
operational challenges for wireless communications networks. Smartphones 
as an example of typical user devices transfer significant amounts of data 
through mobile application updates, real-time video streaming, social 
media services, and other various user activities on the Internet. In addi-
tion, IoT devices are constantly collecting, processing, and transmitting data, 
thus increasing the need for the capacity of mobile networks. The Ericsson 
Mobility Report [1] predicts that by 2030 the number of IoT devices will reach 
42.9 billion, while the number of mobile phone subscribers will exceed 9.5 
billion. Furthermore, the global average monthly data transfer per smart-
phone is expected to reach 21.58 GB in 2025 and is projected to increase to 
39.52 GB by 2030, indicating a significant increase in data traffic and the need 
for extremely large data capacities.

Addtionally, the Ericsson Mobility Report [1] predicts that global mobile 
data traffic will reach 303 EB per month by 2030. Taking into account the traf-
fic generated by user devices via fixed wireless access (FWA) technology, the 
predictions estimate that total mobile network traffic will reach 473 EB per 
month by the end of 2030 (Figure 1.1). The growth in mobile network traffic 
is mainly attributed to an increase in the amount of video content, which is 
estimated to account for 74% of total mobile data traffic at the end of 2024.

With such expected exponential growth of connected devices and data 
volumes by 2030, the practical realization of more energy-efficient mobile 
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Problem of Excessive Mobile Network Energy Consumption

networks becomes challenging. This challenge is primarily related to the 
need for deployment of additional base stations (BSs), the improvement of 
existing network EE, and the introduction of new types of services and appli-
cations which are mostly more throughput intensive than the previous ones. 
The main solution for satisfying this challenge is seen in the ongoing deploy-
ment of fifth-generation (5G) and future deployment of sixth-generation (6G) 
mobile networks. Although 5G mobile network technology in comparison 
with previous generations of mobile networks can provide improved EE per 
unit of transferred data, the total mobile network EC may increase due to 
the increase in the number of installed BSs. Namely, each newly installed 
BS requires additional energy for operation, maintenance, and, in specific 
implementations, cooling. This challenge thus highlights the importance of 
matching network EE with the growing capacity requirements of modern 
mobile networks.

In addition, the nonnegligible GHG emissions of mobile network equip-
ment have also become a concern in the telecommunications sector, which 
is also driven by the increase in the number of connected devices and the 
continuous growth of network traffic volumes. As a result, improving mobile 
network EE and the consequent reduction of GHG emissions have become a 
priority for mobile network operators. In light of this, the 5G technology can 
offer significant potential for network EE improvements that can help mobile 
operators achieve sustainability goals and more effectively reduce the nega-
tive impact of the contribution of telecommunication network equipment to 
global GHG emissions. Thus, the implementation of 5G networks sets new 
benchmarks for the improvement of network EE through the optimization 
of network resources and the introduction of specific technologies that can 

FIGURE 1.1
The projected growth of total global mobile network traffic from 2020 to 2030 [1]
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contribute to significant improvements in the optimization of mobile net-
work EC.

Due to the abovementioned reasons, EE has been defined as a critical per-
formance metric for 5G networks and different energy-efficient technologies 
have been integrated into all recent standards related to the development of 
5G technology [2–4]. The mobile network EE is formalized as a key perfor-
mance indicator, thus imposing new standards in the future development 
of mobile networks. Accordingly, the behavior of mobile networks in terms 
of EE requires careful analysis during the planning, deployment, operation, 
and even disposal phases of the mobile network [2].

The integration of energy-efficient technologies into the standardization of 
5G networks offers numerous benefits. One of the main benefits is related to 
the reduction of operational expenditure (OPEX) costs for telecommunica-
tions service providers, which are directly reduced by decreasing network 
equipment EC and can, in turn, lead to lower service prices for end users. 
Furthermore, reducing GHG emissions through the improvement of mobile 
network EE contributes to the mitigation of negative environmental impacts 
of GHG emissions.

In addition to the ongoing implementation of 5G networks, the upcoming 
6G mobile network technology will further enhance network performance, 
and it is expected to additionally contribute to the improvement of mobile 
network EE [5, 6]. Compared to 5G networks, the 6G networks are expected 
to bring faster data rates, reduced latency, and increased capacity [7]. Besides 
these benefits, the 6G networks are expected to have higher network EE com-
pared to 5G networks, which will be achieved through the use of artificial 
intelligence (AI)-based solutions dedicated to the optimization of network 
EE that can thus significantly reduce the negative environmental impact of 
mobile networks. However, these goals will be challenged with enabling new 
applications and use cases that are expected to be characteristic for 6G net-
works, such as the implementation of services related to autonomous driving 
and robotics, unmanned aerial vehicles, virtual reality, augmented reality, 
and the Internet of Everything in everyday life. This will consequently result 
in a continuation of the increase in demand for data capacity, as all of these 
applications require the transmission of large amounts of data due to their 
complexity and resource-intensive nature. Therefore, issues related to the 
improvement of mobile network EE will continue even with the proliferation 
of 6G networks, and special attention will need to be paid to optimization 
of network EE, in order to optimize network EC and keep GHG emissions at 
acceptable levels [8].

Considering the presented advantages that new generations of mobile net-
works bring and issues related to the problem of excessive EC, it is clear 
that improving EE in 5G and future 6G networks has considerable potential 
to positively impact both society and the environment. Hence, improving 
the EE of mobile networks will be crucial for addressing excessive energy 
consumption and GHG emissions of mobile networks. However, with the 
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support of 5G and 6G technologies, mobile network operators will need to 
meet the growing demands for high data transfer rates and capacity and, at 
the same time, ensure the sustainable development and deployment of cur-
rent and upcoming generations of mobile networks.

1.1 � Motivation for Improving Mobile 
Network Energy Efficiency

Research in the field of improving EE of wireless communication networks 
started intensively during the 2010s. It was motivated by increased environ-
mental awareness related to the evident climate change, the need for sustain-
able development of society, and the necessity for reducing OPEX of mobile 
network operators. This was followed by national, regional, or global regu-
latory demands that started to include improvement of mobile network EE 
in their recommendations and standards. Hence, these motivations foster 
technological advancements that will result in the development of new hard-
ware solutions, algorithms, techniques, and strategies that are dedicated to 
improving mobile network EE, while simultaneously meeting the demands 
for increasing network capacity, ensuring quality of service (QoS) and per-
formance requirements of wireless communication networks.

1.1.1 � Environmental Awareness and Sustainability

As awareness of climate change and the need for sustainable development 
rises, there is increasing pressure on mobile network operators (MNOs) and 
network equipment manufacturers to reduce GHG emissions and energy 
consumption of mobile networks. Improving the EE of mobile communica-
tion networks is a key step toward achieving these goals. Climate change 
represents one of the most important global challenges of our time, and an 
increasing number of scientific studies and reports emphasize its serious-
ness and the need for urgent intervention [9]. Growing awareness of climate 
change has increased demands on industries, especially the telecommunica-
tions sector, to take measures to reduce their impact on the environment [10]. 
This transition is forcing the telecommunications sector to adopt sustain-
able practices and technologies that reduce these negative environmental 
impacts.

1.1.2 � Operating Expenses

Energy accounts for a substantial portion of the OPEX of mobile network 
operators. According to a GSMA report [11], energy accounts for an average 
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of 20%–40% of total OPEX in the telecommunications sector. This is why the 
telecommunications industry must pay close attention to reducing its overall 
EC in order to increase competitiveness and achieve global economic sustain-
ability. The continuous power supply of BSs, cooling systems, data centers, 
and other networking equipment that enable mobile networks to operate gen-
erates high energy costs. Furthermore, the continuous demands for ensuring 
faster data rates and the emergence of more throughput-demanding services 
additionally contribute to the increase in the energy requirements of mobile 
networks, leading to higher OPEX of MNOs. Also, mobile network designs 
based on the installation of a vast amount of new equipment when deploy-
ing every new generation of mobile networks, whose operation also relies 
on constant, uninterrupted power supply sources, significantly contribute 
to the increase in capital expenditures (CAPEX) of MNOs. This presents an 
important challenge for the strategic financial planning of network service 
providers. In the future, this problem will be further emphasized by the 
deployment of ultra-dense 5G networks and the expected implementation 
of 6G networks, which will require an increase in the number of BSs and 
significantly faster data processing capabilities of mobile network equipment 
[12, 13]. Consequently, the increasing complexity and amount of mobile net-
work infrastructure will contribute to the further increase of network EC 
and MNOs’ OPEX, forcing MNOs to seek more sustainable and energy-effi-
cient solutions for the realization of radio, backhaul, and core parts of mobile 
networks.

Given the competitive market environment, MNOs are facing pressure to 
reduce OPEX in order to remain profitable and competitive in the telecom 
market. Thus, increasing mobile network EE has become one of the key strat-
egies for reducing OPEX, enabling MNOs to optimize their operations and 
increase profitability. Ultimately, the reduction of OPEX through the optimi-
zation of network EE strengthens the economic resilience and competitive-
ness of mobile operators on the global market.

1.1.3 � Regulatory Requirements

More and more countries are introducing stricter regulations related to 
energy consumption and GHG emissions. Mobile operators must comply 
with these requirements to avoid sanctions and additional costs associated 
with non-compliance. For example, the European Union has introduced a 
series of regulations to reduce greenhouse gas emissions, including a tar-
get of reducing emissions by 40% by 2030 compared to 1990 levels [14]. This 
decision is part of a broader strategy that also includes increasing the share 
of renewable energy and improving energy efficiency in order to achieve 
climate neutrality by 2050.

In the United States, many states are also adopting targets to reduce green-
house gas emissions and implementing market-based policies. According to 
a report by the National Conference of State Legislatures, at least 16 states 
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have adopted legislative goals to reduce GHG emissions [15]. These goals 
often include emissions monitoring and reporting systems, as well as a cap-
and-trade system to regulate emissions in the energy and transportation sec-
tors. These efforts are aimed at reducing GHG emissions and encouraging 
the use of renewable energy sources, thus supporting the broader goals of 
sustainability and environmental protection.

Additionally, improving mobile network energy efficiency aligns with 
several of the United Nations Sustainable Development Goals [16], which 
include a contribution to:

•	 Goal 7: affordable and clean energy – by reducing the energy con-
sumption per unit of data transmitted and thus lowering GHG emis-
sions and promoting sustainable energy use,

•	 Goal 9: industry, innovation, and infrastructure – through integrat-
ing advanced, energy-saving technologies like renewable-powered 
base stations and efficient network design,

•	 Goal 11: sustainable cities and communities goal – by reducing the 
carbon footprint of urban telecommunications infrastructure, sup-
porting cleaner and more sustainable cities,

•	 Goal 12: responsible consumption and production – by conserving 
network resources and encouraging telecom operators to adopt sus-
tainable practices, from manufacturing to operations and disposal, 
and

•	 Goal 13: climate action – by reducing GHG emissions which enables 
mitigating climate change effects and aligning with national and 
international climate goals.

The telecommunications sector must adapt to such a regulatory framework, 
through reducing the EC and GHG emissions of mobile networks. However, 
the introduction of green policies and energy-efficient technologies in mobile 
networks is becoming imperative not only due to regulatory requirements 
but also due to MNOs’ economic profitability and environmental sustain-
ability. Hence, the goal dedicated to optimizing EE of wireless mobile net-
works is not only a response to regulatory requirements but also a key step 
toward long-term environmental preservation and reduction of OPEX.

1.1.4 � Technological Advancement

Technological progress plays a key role in increasing the EE of wireless com-
munication networks. The development of new technologies in the frame of 
5G and the upcoming 6G networks can bring significant changes in the way 
networks are designed and their EC is managed [17, 18]. It is expected that 
these technologies will enable the implementation of advanced solutions 
that optimize mobile network EC and reduce OPEX. Technological progress 
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enables the possibility of using sophisticated systems that can ensure more 
precise management of mobile network EC. This will be particularly fostered 
through the development of new AI-based solutions for dynamic adjustment 
of network resources in real time, which can result in more energy-efficient 
operation of mobile networks. Considering the growing demands for higher 
network capacity and improved performance, technological progress enables 
EE to be achieved without compromising the QoS. Such technological inno-
vations are crucial for the sustainable development of wireless communica-
tion networks and the reduction of their ecological footprint.
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